Run II Collider Report

Dave McGinnis
Beams Division/Pbar Source
Users' Meeting
June 10, 2002

Collider Goals

- ☐ A peak luminosity of 86x10³⁰ cm⁻² sec⁻¹
- ☐ Integrate 300 pb⁻¹
- The goal for 2003 is to:
 - ☐ integrate the Recycler into operations
 - □ Push for a peak luminosity of 120x10³⁰ cm⁻² sec⁻¹
- The goal for 2004 is to:
 - ☐ Make antiproton recycling operational
 - □ Push for a peak luminosity of 220x10³⁰ cm⁻² sec⁻¹
 - ☐ Begin installation of the Run IIb upgrades
- The goal for 2005 and beyond is to:
 - ☐ Achieve a peak luminosity of 410x10³⁰ cm⁻² sec⁻¹
- This talk will look at the performance of the TEVATRON Collider during the first 5 months of 2002

The Church Plan

Peak Luminosity

The Church Plan

Integrated Luminosity

Integrated Luminosity

Goals vs. Reality

Peak Luminosity

Luminosity Recipe

$$L = \frac{3gf_0}{b^*} \left(BN_p\right) \left(\frac{N_p}{e_p}\right) \frac{F(b^*, q_{x,y}, e_{p,\bar{p}}, S_{p,\bar{p}}^L)}{\left(1 + e_{\bar{p}}/e_p\right)}$$

- The major luminosity limitations are:
 - \Box The number of antiprotons (BN_{pbar})
 - \square The proton beam brightness (N_p/ϵ_p)
 - \Box Hour glass factor (F < 1)

Protons/bunch at Low Beta

Total Number of Phars at Low Beta

Pbar Transfer Efficiency to Low Beta

Pbar Transfer Efficiency to Low Beta

Beam Separation in the TEVATRON

- With 36 bunches there are a much greater number of "long range" crossings
- The proton beam acts as a "soft" collimator to the pbar beam if the beam separation is too small ($<2.5-3\sigma$)
 - ☐ Original beam-beam calculations focused on tune shifts on the collision helix
 - ☐ Dynamic aperture effects due to long-range interactions are now thought to be a much more serious problem.
 - > Dynamic aperture calculations are very difficult to do and interpret.
 - ➤ The beam goes around 10 million turns every 3 minutes
- Solution
 - Better helices
 - > Location constraints
 - > Lattice constraints
 - > Hardware constraints
 - Bigger aperture (needed for bigger helices)
 - **□** Smaller beams
 - > Smaller source emittances
 - ➤ Smaller emittance dilution through the accelerator chain.

Better Helices in the TEVATRON

- Normalized separations at all possible collision points during the "old" Step 13 -> Step 14 collision cog
 - $\hfill \square$ With beams separated at 1.80, a ~20% beam loss occurred
 - lacktriangle With beams separated at 2.7 σ with new helices, beam loss is removed

Bigger Aperture in the TEVATRON

- CO Lambertson Aperture restriction
 - ☐ The "tilting" of the helix is limited due to separator constraints
 - ☐ The C0 Aperture will be increased during the Fall 2002 shutdown.
 - ➤ New magnets
 - \triangleright Beam separation can increase by ~30%

Pbar Beam Size

• The horizontal emittance of a typical 100E+10 antiproton stack is about a factor of 2 larger than the Run II handbook design value.

Pbar Beam Size

- We believe that the horizontal emittance growth is caused by
 - ☐ Intra-beam scattering (60%)
 - \square Trapped ions (40%)
- The intra-beam scattering (IBS) heating of the beam is worse now for Run II than it was in Run I because of the changes in beta functions that were the result of the Accumulator Lattice Upgrade
- The Accumulator lattice was changed to handle the anticipated factor of 3 increase in pbar flux due to the Main Injector Project.

 The change in η caused the IBS heating term to be a factor of 2.5x larger in Run II than for Run I

Pbar Beam Size

- We have developed a two-fold plan to reduce the transverse emittance:
 - ☐ Better transverse stochastic cooling of the Accumulator core.
 - > The bandwidth will increase by a factor of 2
 - > The center frequency of the band will increase by a factor of 1.5
 - ☐ Dual lattice operation mode of the Accumulator
 - \triangleright Keep the "stacking" lattice (η =0.012) for pbar production
 - \triangleright During shot setup, ramp the lattice with the beam at the core orbit to the "shot" lattice (η =0.022)
 - The "shot" lattice will reduce the intra-beam scattering heating by a factor of 2.5
 - The "shot" lattice will increase the cooling rate by a factor of two increase in mixing due to the change in η

$$\frac{d\varepsilon}{dt} \approx -\frac{\varepsilon}{\tau_{cool}} + \frac{Heat}{\varepsilon^{\frac{3}{2}}}$$

$$\frac{\varepsilon_{\text{old}}}{\varepsilon_{\text{new}}} = \left(\frac{\tau_{\text{cool}_{\text{old}}}}{\tau_{\text{cool}_{\text{new}}}} \frac{\text{Heat}_{\text{old}}}{\text{Heat}_{\text{new}}}\right)^{\frac{2}{5}} = (2 \times 1.5 \times 2)^{\frac{2}{5}} \times \left(\frac{0.4 + 0.6}{0.4 + \frac{0.6}{2.5}}\right)^{\frac{2}{5}} = 2.4$$
Bandwidth

Better

Mixing

Reduced

IBS

Accumulator Core Cooling Upgrade

(based on Debuncher-style Technology)

Accumulator Dual Lattice Operation

- A new shot lattice was designed and commissioned
- Ramps between the stacking lattice and the shot lattice were commissioned
 - □ 100% efficient in beam intensity and beam size.
- The 3rd to last shot before the shutdown was done with the ramping lattice mode.
 - ☐ The pbar emittance in the core and the 8 GeV transfer line was substantially reduced for this shot.
 - ☐ The ramping lattice mode was not used for the last 2 shots because of "operational" problems

Pbar Emittance Dilution Throughout the Accelerator Chain

- Transfer line orbit mismatches
- Transfer line lattice mismatches
- Emittance dilution during acceleration
 - Resonances
 - Heating mechanismsnoise, IBS, etc...

Cther Issues

- Poor proton lifetime at 150 Gev
 - ☐ Gas scattering
- Proton longitudinal instabilities in the TEV
- Proton transverse instabilities in the TEV
 - ☐ Requires large chromaticity
 - □ tightens tune working space
- Detector background (vacuum?)
- DC Beam in the TEV
 - ☐ Leakage out of RF Bucket RF Noise
- Coalescing in the Main Injector
 - ☐ Contributes to poor 150 GeV lifetime because of momentum aperture
 - ☐ Reduces luminosity because of the "hourglass" effect
- Pbar stacking rate

Summary

- The present major limitation to luminosity is the poor transmission efficiency of antiprotons to low beta.
- The major culprit in the poor transmission efficiency is long-range effects in the TEVATRON
- The plan to mitigate the long-range effects is to improve beam separation in the TEVATRON
 - ☐ Improved helices
 - ➤ This has been the major contribution to increasing luminosity over the past couple of months
 - ☐ Improved TEV aperture
 - **☐** Smaller antiproton emittances
 - ➤ Accumulator Core cooling
 - > Dual lattice mode in the Accumulator
 - > Antiproton injection damping into the Main Injector and TEVATRON
 - ➤ Improved transfer line matching

Key Projects for 2002

- Install new Accumulator core cooling system June
- Improve TEV F0 vacuum June
- Commission Accumulator dual lattice mode July
- Commission Main Injector Pbar Injection Dampers July
- Modify operations to minimize time spent at 150 GeV in TEV 24 min. -> 9 min. August
- Build, install, and commission TEV transverse dampers –
 September
 - ☐ Injection
 - Instability
- Remove C0 aperture limitation open helix by 30% October
- Modify A0 straight section to improve helix October

Run 2B

- The Run 2B report was finished December 2001 and reviewed by the Accelerator Advisory Committee.
 - ☐ This report will serve as the basis for a TDR
 - ☐ A finished technical design report for Run 2b still does not exist.
- The project consists of 7 sub-projects
 - □ Slip Stacking minimal manpower (0.5 1 FTE)
 - ☐ Lithium Lens Upgrade in progress
 - ☐ AP2-Debuncher Upgrade on hold
 - ☐ Accumulator Stacktail Upgrade on hold
 - ☐ Antiproton Transfer Upgrade on hold
 - Recycler Electron Cooling in progress
 - ☐ TEVATRON electron lens in progress
- A number of these projects are progressing at a very slow rate because manpower is being concentrated on Run 2A

Run 2B and the Recycler

- The peak luminosity goal for Run 2B is 4.1x10³² cm⁻²-sec⁻¹
- At this rate, the collider will consume antiprotons in collisions at a rate of $20\times10^{10}~hr^{-1}$
 - □ We will need to stack pbars at 60×10¹⁰ hr⁻¹
 - ➤ Our present peak rate is 11.2×10¹⁰ hr⁻¹
 - ➤ Our Run 2A goal is 18×10¹⁰ hr⁻¹
 - \succ To obtain 60×10 $^{10}\ hr^{-1}$, we will have to modify the Accumulator stacktail system.
 - ➤ For stability reasons, the peak stack of this modified stacktail system will be about 20×10¹⁰ pbars.
 - \square We will need to accumulate 1000×10^{10} stacks.
- The Recycler is a must for Run 2B !!

Run 2B and the Recycler

- Recycler progress:
 - ☐ All stochastic cooling systems have been commissioned
 - \square Cooled beam lifetime is 100 hours at $20x10^{10}$ pbars
 - \gt Compared to 1200 hours at $90x10^{10}$ pbars for the new Accumulator shot lattice
 - \square Asymptotic emittance is 8 π -mm-mrad at 20x10¹⁰ pbars
 - \triangleright Compared to 6 π -mm-mrad at $80x10^{10}$ pbars for the new Accumulator shot lattice
 - ☐ Antiproton injection efficiency is low (40-50%)
- During the Fall 2002 shutdown
 - ☐ The number of ion pumps will be doubled.
 - > Improve lifetime
 - ➤ Improve asymptotic emittance
 - More shielding and ramped correctors will be added to combat the tune modulation during Main Injector Ramps
- Electron cooling is scheduled to be installed in 2004